在光伏發(fā)電過剩時,利用電能電解水制氫,再將氫氣轉(zhuǎn)化為甲醇儲存;在能源需求高峰或光伏發(fā)電不足時,通過甲醇制氫滿足能源需求,實現(xiàn)能源的時空轉(zhuǎn)移和互補利用。內(nèi)容上,本文創(chuàng)新性地對甲醇制氫現(xiàn)場運用中的安全管理與風險防控進行了深入研究。
在實際反應過程中,甲醇與水蒸氣的混合氣體在一定的溫度(通常為 200 - 300℃)壓力(1 - 5MPa)條件下,通過裝填有催化劑的反應器。常見的催化劑有銅基催化劑,其活性中心能夠吸附甲醇和水蒸氣分子,使它們在催化劑表面發(fā)生活化。甲醇分子在催化劑表面發(fā)生裂解,生成一氧化碳和氫氣(rightleftharpoons CO + 2H_{2})。
接著,一氧化碳與水蒸氣發(fā)生水煤氣變換反應,(CO + H_{2}Orightleftharpoons CO_{2} + H_{2}),進一步生成氫氣,提高氫的產(chǎn)率。通過控制反應溫度、壓力以及原料的摩爾比((H_{2}O)與(CH_{3}OH\)摩爾比一般為 1.0 - 5.0 )等條件,可以優(yōu)化反應的進行,提高甲醇的轉(zhuǎn)化率和氫氣的選擇性。
該反應相對簡單,但由于產(chǎn)物中一氧化碳含量較高,而一氧化碳會對后續(xù)的氫氣應用,如燃料電池的使用產(chǎn)生不利影響,因此通常需要對產(chǎn)物進行進一步的處理,如通過一氧化碳變換反應將一氧化碳轉(zhuǎn)化為二氧化碳和氫氣,以提高氫氣的純度和質(zhì)量 。
傳統(tǒng)的高壓氣態(tài)儲氫需要將氫氣壓縮至的壓力(通常為 35MPa 或 70MPa),這不僅需要昂貴的壓縮設備和高壓儲存容器,而且存在較大的安全風險 。液氫儲存雖然能量密度高,但需要將氫氣冷卻至 - 253℃的低溫,能耗,儲存和運輸成本高昂,且對儲存設備的絕熱性能要求。
而甲醇制氫過程中產(chǎn)生的二氧化碳相對純凈,更易于捕集和利用。如果采用可再生能源合成的甲醇作為原料,如利用太陽能、風能電解水制氫,再將氫氣與二氧化碳合成甲醇,那么整個甲醇制氫過程可以實現(xiàn)近乎零碳排放,對環(huán)境的友好性顯著提高。