以重慶地區(qū)某工程高位收水冷卻塔中央豎井左側(cè)集水槽進(jìn)行有限元三維建模,進(jìn)行有限元整體結(jié)構(gòu)計(jì)算。集水槽底板、側(cè)壁采用Shell181 三維殼單元,暗框架柱、框架頂梁、拉梁,承臺梁及灌注樁均采用Bea m188 三維梁單元。Shell181 及Bea m188 單元能很好地模擬集水槽各部分構(gòu)件。同時,在后處理時能提取集水槽側(cè)壁、底板、暗框架柱及梁的彎矩、剪力及軸力,方便直接用于結(jié)構(gòu)設(shè)計(jì),進(jìn)行配筋計(jì)算。三維模型中shell181 殼單元共有7342 個,Bea m188 梁單元共計(jì)782 個。
集水槽整體位移變形可以看出,集水槽暗框架在⑥軸線變形大,集水槽壁板在①、②與⑤、⑥軸線之間變形大。集水槽的大變形約為14 mm。集水槽壁板內(nèi)力分析?、?、②軸線跨中(X=10.4 m)、⑤、⑥軸線跨中(X=43.2 m) 及沿集水槽高度方向(Z=5.0 m) 處進(jìn)行內(nèi)力分析。集水槽壁板豎向、水平向均同時承受拉力和彎矩。水平向所受拉力大于豎向,越靠近集水槽底部,水壓力越大,水平向所受約束也約大,所受的拉力越大,大拉了為657 kN/m,彎矩大約-267 kN · m/m。
水槽壁板的水平與豎向彎矩圖類似于連續(xù)梁,但與連續(xù)梁彎矩不同之處在于,集水槽壁板同時受拉力,且集水槽水平向的拉力遠(yuǎn)大于豎向所受拉力。水平向大彎矩為-258 kN · m/m,大拉力為687 kN/m ;豎向大彎矩為465 kN · m/m,大拉力為113 kN/m。因此,集水槽壁板應(yīng)按拉彎構(gòu)件進(jìn)行配筋計(jì)算。
因集水槽內(nèi)平衡孔開孔過大使三角堰均勻集水作用降低。 為此在泉州市水質(zhì)凈化中心的大力幫助下,結(jié)合泉州寶洲污水處理廠二沉池運(yùn)行時出現(xiàn)的問題和現(xiàn)象進(jìn)行了試驗(yàn)及分析。
出水堰槽的設(shè)置方式及位置在現(xiàn)行設(shè)計(jì)水力負(fù)荷和停留時間下是影響出水水質(zhì)的一個主要因素 , 上述試驗(yàn)數(shù)據(jù)雖然進(jìn)一步驗(yàn)證了由污水處理廠運(yùn)行維護(hù)與管理等相關(guān)文章提出的圓形中心進(jìn)水二沉池出水水質(zhì)位置不在靠近池壁處這一現(xiàn)象 ,但理論上還沒有較全面的解釋和分析 ,仍然有深入研究的必要。
在工程應(yīng)用中 ,為確保沉淀效果和出水水質(zhì) ,設(shè)計(jì)除依照規(guī)范盡可能減少堰上負(fù)荷外 ,還避免堰的設(shè)置位置不當(dāng)對出水帶來的影響 ,應(yīng)避免采用外置單側(cè)堰方式出水; 二沉池出水設(shè)計(jì)為內(nèi)置雙側(cè)堰出水時 ,也宜設(shè)計(jì)離池壁 2~ 3 m處。 另外二沉池出水堰槽設(shè)計(jì)平衡孔時 ,也應(yīng)在設(shè)計(jì)中選擇適當(dāng)?shù)挠?jì)算方法確定 ,使二沉池出水槽和溢流堰處在合理的運(yùn)行狀態(tài)。